Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Sci Rep ; 14(1): 722, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184729

ABSTRACT

Morphological studies applied to the taxonomy of the Triatominae cover various structures (head, wing, thorax, genitalia, and eggs). Exochorial structures of hybrid eggs were characterized and compared with the parents, demonstrating that hybrids presented characteristics identical to the exochorial pattern observed in the females of the crosses, which resulted in the hypothesis that the pattern of triatomine eggs is possibly a characteristic inherited from females. Thus, we characterized the exochorium of the eggs of several triatomine hybrids and compared them with the parents, to assess the pattern of segregation and test the hypothesis of maternal inheritance. Hybrids were obtained in at least one direction from all crosses. The analysis of the exochorium of the eggs of the hybrids showed different patterns of segregation: "exclusively paternal", "predominantly maternal", "predominantly paternal", "mutual", and "differential". Curiously, none of the hybrids evaluated presented characteristics that segregated exclusively from the female parental species. Thus, we demonstrate that the hypothesis of maternal inheritance of the exochorium pattern of eggs is not valid and we emphasize the importance of alternative/combined tools (such as integrative taxonomy) for the correct identification of these insect vectors (mainly in view of possible natural hybridization events due to climate and environmental changes).


Subject(s)
Chagas Disease , Triatominae , Animals , Female , Maternal Inheritance , Chagas Disease/genetics , Triatominae/genetics , Climate , Insect Vectors/genetics
2.
Parasit Vectors ; 16(1): 390, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891624

ABSTRACT

BACKGROUND: Hybridization events between Triatoma spp. have been observed under both natural and laboratory conditions. The ability to produce hybrids can influence different aspects of the parent species, and may even result in events of introgression, speciation and extinction. Hybrid sterility is caused by unviable gametes (due to errors in chromosomal pairing [meiosis]) or by gonadal dysgenesis (GD). All of the triatomine hybrids analyzed so far have not presented GD. We describe here for the first time GD events in triatomine hybrids and highlight these taxonomic and evolutionary implications of these events. METHODS: Reciprocal experimental crosses were performed between Triatoma longipennis and Triatoma mopan. Intercrosses were also performed between the hybrids, and backcrosses were performed between the hybrids and the parent species. In addition, morphological and cytological analyzes were performed on the atrophied gonads of the hybrids. RESULTS: Hybrids were obtained only for the crosses T. mopan♀ × T. longipennis♂. Intercrosses and backcrosses did not result in offspring. Morphological analyses of the male gonads of the hybrids confirmed that the phenomenon that resulted in sterility of the hybrid was bilateral GD (the gonads of the hybrids were completely atrophied). Cytological analyses of the testes of the hybrids also confirmed GD, with no germ cells observed (only somatic cells, which make up the peritoneal sheath). CONCLUSIONS: The observations made during this study allowed us to characterize, for the first time, GD in triatomines and demonstrated that gametogenesis does not occur in atrophied gonads. The characterization of GD in male hybrids resulting from the crossing of T. mopan♀ × T. longipennis♂ highlights the importance of evaluating both the morphology and the cytology of the gonads to confirm which event resulted in the sterility of the hybrid: GD (which results in no gamete production) or meiotic errors (which results in non-viable gametes).


Subject(s)
Chagas Disease , Gonadal Dysgenesis , Infertility , Triatoma , Triatominae , Male , Animals , Triatominae/genetics , Gene Flow , Triatoma/genetics , Gonads , Hybridization, Genetic , Disease Vectors
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047319

ABSTRACT

Several cytogenetic studies have already been performed in Triatominae, such that different karyotypes could be characterized (ranging from 2n = 21 to 25 chromosomes), being the changes in the number of chromosomes related mainly to fusion and fission events. These changes have been associated with reproductive isolation and speciation events in other insect groups. Thus, we evaluated whether different karyotypes could act in the reproductive isolation of triatomines and we analyzed how the events of karyotypic evolution occurred along the diversification of these vectors. For this, experimental crosses were carried out between triatomine species with different karyotypes. Furthermore, based on a phylogeny with 88 triatomine taxa (developed with different molecular markers), a reconstruction of ancestral karyotypes and of anagenetic and cladogenetic events related to karyotypic alterations was performed through the ChromoSSE chromosomal evolution model. All crosses performed did not result in hybrids (prezygotic isolation in both directions). Our modeling results suggest that during Triatominae diversification, at least nine cladogenetic events may be associated with karyotype change. Thus, we emphasize that these alterations in the number of chromosomes can act as a prezygotic barrier in Triatominae (karyotypic isolation), being important evolutionary events during the diversification of the species of Chagas disease vectors.


Subject(s)
Chagas Disease , Reduviidae , Triatominae , Animals , Triatominae/genetics , Reduviidae/genetics , Chagas Disease/genetics , Karyotype , Phylogeny , Chromosome Aberrations , Disease Vectors
4.
Genes (Basel) ; 14(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36833298

ABSTRACT

The genome of Triatoma delpontei Romaña & Abalos 1947 is the largest within Heteroptera, approximately two to three times greater than other evaluated Heteroptera genomes. Here, the repetitive fraction of the genome was determined and compared with its sister species Triatoma infestans Klug 1834, in order to shed light on the karyotypic and genomic evolution of these species. The T. delpontei repeatome analysis showed that the most abundant component in its genome is satellite DNA, which makes up more than half of the genome. The T. delpontei satellitome includes 160 satellite DNA families, most of them also present in T. infestans. In both species, only a few satellite DNA families are overrepresented on the genome. These families are the building blocks of the C-heterochromatic regions. Two of these satellite DNA families that form the heterochromatin are the same in both species. However, there are satellite DNA families highly amplified in the heterochromatin of one species that in the other species are in low abundance and located in the euchromatin. Therefore, the present results depicted the great impact of the satellite DNA sequences in the evolution of Triatominae genomes. Within this scenario, satellitome determination and analysis led to a hypothesis that explains how satDNA sequences have grown on T. delpontei to reach its huge genome size within true bugs.


Subject(s)
Triatoma , Triatominae , Animals , Triatoma/genetics , Triatominae/genetics , DNA, Satellite , Heterochromatin , Genomics
5.
Parasit Vectors ; 15(1): 403, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36324186

ABSTRACT

BACKGROUND: The geniculatus clade, composed by the rufotuberculatus, lignarius, geniculatus and megistus groups, relates evolutionarily the species of the genus Panstrongylus and Nesotriatoma. Several studies have shown that triatomine hybrids can play an important role in the transmission of Chagas disease. Natural hybrids between species of the geniculatus clade have never been reported to our knowledge. Thus, carrying out experimental crosses between species of the geniculatus clade can help to elucidate the taxonomic issues as well as contribute to the epidemiological knowledge of this group. METHODS: Experimental crosses were carried out between species of the megistus and lignarius groups to evaluate the reproductive compatibility between them. A phylogenetic reconstruction was also performed with data available in GenBank for the species of the geniculatus clade to show the relationships among the crossed species. RESULTS: Phylogenetic analysis grouped the species of the geniculatus clade into four groups, as previously reported. In the interspecific crosses performed there was no hatching of eggs, demonstrating the presence of prezygotic barriers between the crossed species and confirming their specific status. CONCLUSIONS: In contrast to the other groups of the Triatomini tribe, as well as the Rhodniini, there are prezygotic barriers that prevent the formation of hybrids between species of the megistus and lignarius groups. Thus, the geniculatus clade may represent an important evolutionary model for Triatominae, highlighting the need for further studies with greater sample efforts for this clade (grouping the 17 species of Panstrongylus and the three of Nesotriatoma).


Subject(s)
Chagas Disease , Panstrongylus , Triatominae , Animals , Triatominae/genetics , Phylogeny
6.
Parasit Vectors ; 15(1): 307, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038947

ABSTRACT

BACKGROUND: Chagas disease, one of the most important neglected tropical diseases in the countries of Latin America, is considered to be a particularly important public health concern in the Amazon region due to increases in the number of outbreaks of acute Chagas disease and increased local transmission in the last 20 years. However, relative to other countries, in Bolivia there is little information available on its transmission in the Amazon region. The aim of this study was to investigate the infestation of palm trees, the main habitat of Triatominae in the region, in several localities, to evaluate the danger they represent to inhabitants. METHODS: Triatominae were collected using live bait traps left overnight in six localities in Pando and Beni Departments, Bolivia. DNA extraction and sequencing were used to establish the Triatominae species (Cytb, 16S and 28S-D2 gene fragments), and the blood meal sources (Cytb fragment). Trypanosoma sp. infection was analyzed by sequencing gene fragments (GPX, GPI, HMCOAR, LAP, PDH and COII) or by mini-exon multiplex PCR. RESULTS: A total of 325 Rhodnius were captured (97.3% of nymphs) from the 1200 traps placed in 238 palm trees and 32 burrows/ground holes. Sequence analyses on DNA extracted from 114 insects and phylogeny analysis identified two triatomine species: Rhodnius stali (17%) and Rhodnius montenegrensis (equated to Rhodnius robustus II, 83%). These were found in palm trees of the genera Attalea (69%), Astrocaryum (13%), Copernicia (12%), Euterpe (2%) and Acrocomia (1%). The infection rate was around 30% (165 analyzed insects), with 90% of analyzed insects infected by Trypanosoma cruzi (only the TcI discrete typing unit was detected), 3% infected by Trypanosoma rangeli (first time found in Bolivian Triatominae) and 7% infected by mixed T. cruzi (TcI)-T. rangeli. Rhodnius specimens fed on Didelphidae, rodents, gecko and humans. CONCLUSIONS: The results of this study highlight the epidemiological importance of Rhodnius in the Bolivian Amazon region. The huge geographical distribution of Rhodnius and their proximity to the human dwellings, high infection rate and frequent meals on the human population highlight a risk of transmission of Chagas disease in the region.


Subject(s)
Arecaceae , Chagas Disease , Rhodnius , Triatominae , Trypanosoma cruzi , Animals , Arecaceae/genetics , Bolivia/epidemiology , Chagas Disease/epidemiology , DNA , Humans , Insect Vectors , Rhodnius/genetics , Trees/genetics , Triatominae/genetics , Trypanosoma cruzi/genetics
7.
Neotrop Entomol ; 51(3): 483-492, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35360894

ABSTRACT

Chagas' disease is transmitted mainly by members of the subfamily Triatominae (Hemiptera: Reduviidae). Among them, Triatoma infestans (Klug) is the main vector of the disease in Southern Cone of Latin America. In order to contribute to knowledge of the genetic variation between triatomine vectors, in the present study, we analyzed the intraspecific and interspecific variations of the seven mitogenomes available from Triatominae. In addition, in order to examine their evolutionary relationships with others species of Reduviidae and to estimate the divergence time of the main lineages, we constructed phylogenetic trees including mitogenome sequences of 30 species from Reduviidae. Comparative analysis between mitochondrial DNA sequences from two specimens of T. infestans revealed a total of 54 variable sites. Triatoma infestans, Triatoma dimidiata (Latreille), Triatoma rubrofasciata (De Geer), Triatoma migrans (Breddin), Rhodnius pictipes (Stål), and Panstrongylus rufotuberculatus (Champion) present similar mitogenome organization and the length differences observed among these species are primarily caused by variations in control region (CR) and intergenic spacers (IGS). The relative synonymous codon usage values (RSCU) were similar in the six species of Triatominae, and in agreement with the observed in other insects, a biased use of A and C nucleotides in the majority strand was detected. The monophyly of five subfamilies was strongly supported (Phymatinae, Peiratinae, Triatominae, Stenopodainae, and Harpactorinae), while the sampled species of Reduviinae were grouped with one specie from the Salyavatinae subfamily. The oldest subfamily is Phymatinae at 100.3 Mya (99.6-102.2 Mya) and the youngest is Triatominae and Stenopodainae at 52.6 Mya (42.5-63.7 Mya). The estimated diversification time for the Triatominae subfamily agrees with the Andean uplift geological event. An analysis with more mitogenomes from more Triatominae species would be necessary to provide sufficient evidence to support this finding.


Subject(s)
Chagas Disease , Genome, Mitochondrial , Triatoma , Triatominae , Animals , Chagas Disease/genetics , Disease Vectors , Phylogeny , Triatoma/genetics , Triatominae/genetics
8.
J Med Entomol ; 59(2): 675-680, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-34993549

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease in humans and dogs in the Americas. Transmission predominantly occurs via the feces of infected kissing bugs (Hemiptera: family Reduviidae; subfamily Triatominae) contaminating bite site wounds or mucous membranes. To better understand Chagas disease entomologic risk in Oklahoma, kissing bugs collected from within the state were tested for T. cruzi DNA. Data including county of insect collection, species and instar, and specific locations where specimens were found were collated. Triatomines were also tested by PCR to potentially identify DNA of vertebrate species on which specimens had recently fed. In total, 110 kissing bugs from 22 counties were tested. All triatomines were identified as Triatoma sanguisuga nymphs or adults, with the exception of one possible T. lecticularia adult. Trypanosoma cruzi DNA was detected in 22 (20%) triatomines from 12 counties spanning the state. The majority of T. cruzi PCR positive kissing bugs were found inside homes or associated structures (i.e., garages, porches). Vertebrate DNA was identified in 27 (24.5%) triatomines, with human DNA detected in 25 (92.6%) of these specimens, and canine and raccoon DNA detected in one specimen each (3.7%). Two specimens tested positive for both T. cruzi and human DNA and one specimen tested positive for both T. cruzi and raccoon DNA. Results from this study indicate that kissing bugs carrying T. cruzi are widespread in Oklahoma, that positive kissing bugs infest homes and associated structures, and that human-vector, canine-vector, and wildlife-vector contact all occur within the state.


Subject(s)
Chagas Disease , Dog Diseases , Triatoma , Triatominae , Trypanosoma cruzi , Animals , DNA , Dogs , Insect Vectors , Oklahoma , Triatoma/genetics , Triatominae/genetics , Trypanosoma cruzi/genetics
9.
Med Vet Entomol ; 36(1): 66-80, 2022 03.
Article in English | MEDLINE | ID: mdl-34730244

ABSTRACT

The subfamily Triatominae (Hemiptera-Reduviidae) includes more than 150 blood-sucking species, potential vectors of the protozoan Trypanosoma cruzi, causative agent of Chagas disease. A distinctive cytogenetic characteristic of this group is the presence of extremely stable chromosome numbers. Unexpectedly, the analyses of the chromosomal location of ribosomal gene clusters and other repetitive sequences place Triatominae as a significantly diverse hemipteran subfamily. Here, we advance the understanding of Triatominae chromosomal evolution through the analysis of the 45S rDNA cluster chromosomal location in 92 Triatominae species. We found the 45S rDNA clusters in one to four loci per haploid genome with different chromosomal patterns: On one or two autosomes, on one, two or three sex chromosomes, on the X chromosome plus one to three autosomes. The movement of 45S rDNA clusters is discussed in an evolutionary context. Our results illustrate that rDNA mobility has been relatively common in the past and in recent evolutionary history of the group. The high frequency of rDNA patterns involving autosomes and sex chromosomes among closely related species could affect genetic recombination and the viability of hybrid populations, which suggests that the mobility of rDNA clusters could be a driver of species diversification.


Subject(s)
Chagas Disease , Reduviidae , Triatominae , Animals , Chagas Disease/veterinary , Chromosomes , DNA, Ribosomal/genetics , Triatominae/genetics
10.
Parasit Vectors ; 14(1): 519, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34625109

ABSTRACT

BACKGROUND: Colombia's National Army is one of the largest military institutions in the country based on the number of serving members and its presence throughout the country. There have been reports of cases of acute or chronic cases of Chagas disease among active military personnel. These may be the result of military-associated activities performed in jungles and other endemic areas or the consequence of exposure to Trypanosoma cruzi inside military establishments/facilities located in endemic areas. The aim of the present study was to describe the circulation of T. cruzi inside facilities housing four training and re-training battalions [Battalions of Instruction, Training en Re-training (BITERs)] located in municipalities with historical reports of triatomine bugs and Chagas disease cases. An entomological and faunal survey of domestic and sylvatic environments was conducted inside each of these military facilities. METHODS: Infection in working and stray dogs present in each BITER location was determined using serological and molecular tools, and T. cruzi in mammal and triatomine bug samples was determined by PCR assay. The PCR products of the vertebrate 12S rRNA gene were also obtained and subjected to Sanger sequencing to identify blood-feeding sources. Finally, we performed a geospatial analysis to evaluate the coexistence of infected triatomines and mammals with the military personal inside of each BITER installation. RESULTS: In total, 86 specimens were collected: 82 Rhodnius pallescens, two Rhodnius prolixus, one Triatoma dimidiata and one Triatoma maculata. The overall T. cruzi infection rate for R. pallescens and R. prolixus was 56.1 and 100% respectively, while T. dimidiata and T. maculata were not infected. Eight feeding sources were found for the infected triatomines, with opossum and humans being the most frequent sources of feeding (85.7%). Infection was most common in the common opossum Didelphis marsupialis, with infection levels of 77.7%. Sylvatic TcI was the most frequent genotype, found in 80% of triatomines and 75% of D. marsupialis. Of the samples collected from dogs (n = 52), five (9.6%; 95% confidence interval: 3.20-21.03) were seropositive based on two independent tests. Four of these dogs were creole and one was a working dog. The spatial analysis revealed a sympatry between infected vectors and mammals with the military population. CONCLUSIONS: We have shown a potential risk of spillover of sylvatic T. cruzi transmission to humans by oral and vectorial transmission in two BITER installations in Colombia. The results indicate that installations where 100,000 active military personnel carry out training activities should be prioritized for epidemiological surveillance of Chagas disease.


Subject(s)
Chagas Disease/transmission , Housing , Insect Vectors/parasitology , Military Personnel/statistics & numerical data , Teaching , Triatominae/parasitology , Trypanosoma cruzi/pathogenicity , Zoonoses/parasitology , Animals , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Chagas Disease/epidemiology , Chagas Disease/parasitology , Colombia/epidemiology , Dogs , Female , Genotype , Humans , Male , Mammals/parasitology , Risk Factors , Triatominae/genetics , Trypanosoma cruzi/immunology , Zoonoses/prevention & control , Zoonoses/transmission
11.
Parasit Vectors ; 14(1): 350, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215287

ABSTRACT

BACKGROUND: The tribe Rhodniini is a monophyletic group composed of 24 species grouped into two genera: Rhodnius and Psammolestes. The genus Psammolestes includes only three species, namely P. coreodes, P. tertius and P. arthuri. Natural hybridization events have been reported for the Rhodniini tribe (for genus Rhodnius specifically). Information obtained from hybridization studies can improve our understanding of the taxonomy and systematics of species. Here we report the results from experimental crosses performed between P. tertius and P. coreodes and from subsequent analyses of the reproductive and morphological aspects of the hybrids. METHODS: Crossing experiments were conducted between P. tertius and P. coreodes to evaluate the pre- and post-zygotic barriers between species of the Rhodniini tribe. We also performed cytogenetic analyses of the F1 hybrids, with a focus on the degree of pairing between the homeologous chromosomes, and morphology studies of the male gonads to evaluate the presence of gonadal dysgenesis. Lastly, we analyzed the segregation of phenotypic characteristics. RESULTS: Interspecific experimental crosses demonstrated intrageneric genomic compatibility since hybrids were produced in both directions. However, these hybrids showed a high mortality rate, suggesting a post-zygotic barrier resulting in hybrid unviability. The F1 hybrids that reached adulthood presented the dominant phenotypic segregation pattern for P. tertius in both directions. These insects were then intercrossed; the hybrids were used in the cross between P. tertius ♀ × P. coreodes ♂ died before oviposition, and the F1 hybrids of P. coreodes ♀ x P. tertius ♂ oviposited and their F2 hybrids hatched (however, all specimens died after hatching, still in first-generation nymph stage, pointing to a hybrid collapse event). Morphological analyses of male gonads from F1 hybrids showed that they did not have gonadal dysgenesis. Cytogenetic analyses of these triatomines showed that there were metaphases with 100% pairing between homeologous chromosomes and metaphases with pairing errors. CONCLUSION: The results of this study demonstrate that Psammolestes spp. have intrageneric genomic compatibility and that post-zygotic barriers, namely unviability of hybrid and hybrid collapse, resulted in the breakdown of the hybrids of P. tertius and P. coreodes, confirming the specific status of species based on the biological concept of species.


Subject(s)
Evolution, Molecular , Triatominae/genetics , Triatominae/physiology , Animals , Cytogenetic Analysis , Female , Male , Reproduction
12.
Parasit Vectors ; 14(1): 340, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174967

ABSTRACT

BACKGROUND: Meccus' taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma. In 1859 the species was transferred to the genus Meccus and in 1930 to Triatoma. However, in the twentieth century, the Meccus genus was revalidated (alteration corroborated by molecular studies) and, in the twenty-first century, through a comprehensive study including more sophisticated phylogenetic reconstruction methods, Meccus was again synonymous with Triatoma. Events of natural hybridization with production of fertile offspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma subcomplex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. Based on the above, we carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compatibility between species of the T. phyllosoma complex. In addition, we have grouped our results with information from the literature regarding crosses between species that were grouped in the genus Meccus with Triatoma, in order to discuss the importance of experimental crosses to confirm the generic reorganization of species. RESULTS: The crosses between T. mopan female and T. longipennis male resulted in viable offspring. The hatching of hybrids, even if only in one direction and/or at low frequency, demonstrates reproductive compatibility and homeology between the genomes of the parents. CONCLUSION: Considering that intergeneric crosses usually do not result in viable offspring in Triatominae, the reproductive compatibility observed between the T. phyllosoma subcomplex species considered in the Meccus genus with species of the Triatoma genus shows that there is "intergeneric" genomic compatibility, which corroborates the generic reorganization of Meccus in Triatoma.


Subject(s)
Triatominae/classification , Triatominae/physiology , Animals , Female , Hybridization, Genetic , Male , Phylogeny , Reproduction , Sexual Behavior, Animal , Sympatry , Triatoma/classification , Triatoma/genetics , Triatoma/physiology , Triatominae/genetics
13.
Sci Rep ; 11(1): 12306, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112903

ABSTRACT

Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.


Subject(s)
Gastrointestinal Microbiome/genetics , Genetic Variation , Triatoma/genetics , Triatominae/genetics , Animals , Chagas Disease/genetics , Chagas Disease/parasitology , Chagas Disease/pathology , Genotype , Humans , Insect Vectors/genetics , Population Groups , Rhodnius/pathogenicity , Triatoma/classification , Triatominae/parasitology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/pathogenicity
14.
Parasit Vectors ; 14(1): 195, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33832518

ABSTRACT

BACKGROUND: Triatomine bugs, the vectors of Chagas disease, associate with vertebrate hosts in highly diverse ecotopes. It has been proposed that occupation of new microhabitats may trigger selection for distinct phenotypic variants in these blood-sucking bugs. Although understanding phenotypic variation is key to the study of adaptive evolution and central to phenotype-based taxonomy, the drivers of phenotypic change and diversity in triatomines remain poorly understood. METHODS/RESULTS: We combined a detailed phenotypic appraisal (including morphology and morphometrics) with mitochondrial cytb and nuclear ITS2 DNA sequence analyses to study Rhodnius ecuadoriensis populations from across the species' range. We found three major, naked-eye phenotypic variants. Southern-Andean bugs primarily from vertebrate-nest microhabitats (Ecuador/Peru) are typical, light-colored, small bugs with short heads/wings. Northern-Andean bugs from wet-forest palms (Ecuador) are dark, large bugs with long heads/wings. Finally, northern-lowland bugs primarily from dry-forest palms (Ecuador) are light-colored and medium-sized. Wing and (size-free) head shapes are similar across Ecuadorian populations, regardless of habitat or phenotype, but distinct in Peruvian bugs. Bayesian phylogenetic and multispecies-coalescent DNA sequence analyses strongly suggest that Ecuadorian and Peruvian populations are two independently evolving lineages, with little within-lineage phylogeographic structuring or differentiation. CONCLUSIONS: We report sharp naked-eye phenotypic divergence of genetically similar Ecuadorian R. ecuadoriensis (nest-dwelling southern-Andean vs palm-dwelling northern bugs; and palm-dwelling Andean vs lowland), and sharp naked-eye phenotypic similarity of typical, yet genetically distinct, southern-Andean bugs primarily from vertebrate-nest (but not palm) microhabitats. This remarkable phenotypic diversity within a single nominal species likely stems from microhabitat adaptations possibly involving predator-driven selection (yielding substrate-matching camouflage coloration) and a shift from palm-crown to vertebrate-nest microhabitats (yielding smaller bodies and shorter and stouter heads). These findings shed new light on the origins of phenotypic diversity in triatomines, warn against excess reliance on phenotype-based triatomine-bug taxonomy, and confirm the Triatominae as an informative model system for the study of phenotypic change under ecological pressure .


Subject(s)
Adaptation, Physiological , Triatominae/genetics , Animals , Biological Evolution , Ecosystem , Ecuador , Humans , Insect Vectors/anatomy & histology , Insect Vectors/classification , Insect Vectors/genetics , Insect Vectors/physiology , Peru , Phenotype , Phylogeny , Selection, Genetic , Triatominae/anatomy & histology , Triatominae/classification , Triatominae/physiology
15.
PLoS One ; 16(2): e0247068, 2021.
Article in English | MEDLINE | ID: mdl-33630885

ABSTRACT

Scientific collections such as the U.S. National Museum (USNM) are critical to filling knowledge gaps in molecular systematics studies. The global taxonomic impediment has resulted in a reduction of expert taxonomists generating new collections of rare or understudied taxa and these large historic collections may be the only reliable source of material for some taxa. Integrated systematics studies using both morphological examinations and DNA sequencing are often required for resolving many taxonomic issues but as DNA methods often require partial or complete destruction of a sample, there are many factors to consider before implementing destructive sampling of specimens within scientific collections. We present a methodology for the use of archive specimens that includes two crucial phases: 1) thoroughly documenting specimens destined for destructive sampling-a process called electronic vouchering, and 2) the pipeline used for whole genome sequencing of archived specimens, from extraction of genomic DNA to assembly of putative genomes with basic annotation. The process is presented for eleven specimens from two different insect subfamilies of medical importance to humans: Anophelinae (Diptera: Culicidae)-mosquitoes and Triatominae (Hemiptera: Reduviidae)-kissing bugs. Assembly of whole mitochondrial genome sequences of all 11 specimens along with the results of an ortholog search and BLAST against the NCBI nucleotide database are also presented.


Subject(s)
Culicidae/genetics , DNA/genetics , Animals , Genomics/methods , Humans , Phylogeny , Sequence Analysis, DNA/methods , Triatoma/genetics , Triatominae/genetics
16.
Am J Trop Med Hyg ; 104(2): 653-655, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33399039

ABSTRACT

Chagas disease is a potentially life-threatening illness caused by the protozoan Trypanosoma cruzi and transmitted, mainly, by hematophagous insects of the Triatominae subfamily. In Brazil, there are currently about 66 triatomine species distributed throughout the country's 27 states. Triatoma infestans is considered as a species of great vectorial importance, mainly because of its biological characteristics, such as the high degree of anthropophilia, adaptation to the home environment, ability to withstand long periods of fasting, and present a wide geographical distribution. Taking into account the epidemiological importance of these species, we carried out the first report of T. infestans in the Espírito Santo, Brazil, and development of an identification key for all species notified in that state, based on cytogenetic data. This information is important because they contribute to the direction of epidemiological surveillance activities carried out by vector control programs of the Espírito Santo, Brazil.


Subject(s)
Chagas Disease/transmission , Insect Vectors , Triatominae , Animals , Brazil , Chagas Disease/prevention & control , Cytogenetic Analysis , Humans , Insect Vectors/anatomy & histology , Insect Vectors/genetics , Triatominae/anatomy & histology , Triatominae/genetics
17.
Parasit Vectors ; 13(1): 434, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867816

ABSTRACT

BACKGROUND: Triatomines are hematophagous insects that play an important role as vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These insects have adapted to multiple blood-feeding sources that can affect relevant aspects of their life-cycle and interactions, thereby influencing parasitic transmission dynamics. We conducted a characterization of the feeding sources of individuals from the primary circulating triatomine genera in Colombia using amplicon-based next-generation sequencing (NGS). METHODS: We used 42 triatomines collected in different departments of Colombia. DNA was extracted from the gut. The presence of T. cruzi was identified using real-time PCR, and discrete typing units (DTUs) were determined by conventional PCR. For blood-feeding source identification, PCR products of the vertebrate 12S rRNA gene were obtained and sequenced by next-generation sequencing (NGS). Blood-meal sources were inferred using blastn against a curated reference dataset containing the 12S rRNA sequences belonging to vertebrates with a distribution in South America that represent a potential feeding source for triatomine bugs. Mean and median comparison tests were performed to evaluate differences in triatomine blood-feeding sources, infection state, and geographical regions. Lastly, the inverse Simpson's diversity index was calculated. RESULTS: The overall frequency of T. cruzi infection was 83.3%. TcI was found as the most predominant DTU (65.7%). A total of 67 feeding sources were detected from the analyses of approximately 7 million reads. The predominant feeding source found was Homo sapiens (76.8%), followed by birds (10.5%), artiodactyls (4.4%), and non-human primates (3.9%). There were differences among numerous feeding sources of triatomines of different species. The diversity of feeding sources also differed depending on the presence of T. cruzi. CONCLUSIONS: To the best of our knowledge, this is the first study to employ amplicon-based NGS of the 12S rRNA gene to depict blood-feeding sources of multiple triatomine species collected in different regions of Colombia. Our findings report a striking read diversity that has not been reported previously. This is a powerful approach to unravel transmission dynamics at microgeographical levels.


Subject(s)
Chagas Disease/transmission , Triatominae , Trypanosoma cruzi/isolation & purification , Animals , Birds/blood , Birds/genetics , Blood , Chagas Disease/parasitology , Colombia , DNA, Protozoan , Feeding Behavior , High-Throughput Nucleotide Sequencing/methods , Humans , Insect Vectors/genetics , Insect Vectors/parasitology , Intestines , Panstrongylus/genetics , Panstrongylus/parasitology , Primates/blood , Primates/genetics , Real-Time Polymerase Chain Reaction , Rhodnius/genetics , Rhodnius/parasitology , Triatoma/genetics , Triatoma/parasitology , Triatominae/genetics , Triatominae/parasitology , Trypanosoma cruzi/genetics
18.
Infect Genet Evol ; 84: 104373, 2020 10.
Article in English | MEDLINE | ID: mdl-32454247

ABSTRACT

Triatominae is a subfamily of blood-sucking reduviid hemipterans of public health importance primarily in tropical and sub-tropical regions of the Americas, whose members possess various morphological adaptations closely associated to hematophagy. Despite their medical importance, the systematics of the subfamily is far from resolved, particularly within the tribe Triatomini. Here we employed mitochondrial genome DNA sequences to reconstruct the phylogenetic relationships among 19 species of the North-Central American (NCA) clade of Triatomini and to estimate the times of origin and diversification of its main clades. Twenty-nine mitogenomes were examined for representative specimens of 25 species, including the outgroup. Phylogenetic informativeness estimated for each protein-coding gene showed that cox1, cox2 and atp6 were the most informative markers, whereas atp8 and nad4 had high saturation levels. Phylogenetic analyses excluding the latter two protein-coding genes recovered an almost fully resolved topology. The NCA clade apparently originated shortly after emergence of an initial land bridge of the Panama Isthmus, ca. 15.05-20.05 Mya. An Asian/pantropical subclade with Linshcosteus costalis, Triatoma rubrofasciata and T. migrans was nested within the NCA clade, from which it diverged ca. 12.42-17.3Mya. Uncorrected cox1 and 13 protein-coding gene distances suggest the existence of additional species within the dimidiata complex. In contrast, T. phyllosoma, T. mazzottii and T. longipennis, from the phyllosoma complex, have considerably low cox1 and 13 PCG distances among them, suggesting mitochondrial introgression or conspecificity. Our study yielded a robust phylogeny for the group, which could be tested with further phylogenetic hypotheses based on nuclear genome-wide markers.


Subject(s)
Genome, Mitochondrial , Phylogeny , Triatominae/genetics , Animals , DNA, Mitochondrial , Insect Proteins/genetics , Triatoma/genetics
19.
Trends Parasitol ; 36(3): 250-265, 2020 03.
Article in English | MEDLINE | ID: mdl-32007395

ABSTRACT

Triatomines are blood-feeding insects that prey on vertebrate hosts. Their saliva is largely responsible for their feeding success. The triatomine salivary content has been studied over the past decades, revealing multifunctional bioactive proteins targeting the host´s hemostasis and immune system. Recently, sequencing of salivary-gland mRNA libraries revealed increasingly complex and complete transcript databases that have been used to validate the expression of deduced proteins through proteomics. This review provides an insight into the journey of discovery and characterization of novel molecules in triatomine saliva.


Subject(s)
Insect Proteins/chemistry , Insect Vectors/chemistry , Saliva/chemistry , Salivary Glands/chemistry , Triatominae/chemistry , Animals , Insect Proteins/genetics , Insect Proteins/immunology , Insect Vectors/genetics , Insect Vectors/immunology , Proteomics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Saliva/immunology , Salivary Glands/immunology , Triatominae/genetics , Triatominae/immunology
20.
Acta Trop ; 198: 105071, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31323194

ABSTRACT

The blood-sucking insects of the subfamily Triatominae are vectors of Chagas disease, the most impairing protozoan parasitic infection in Latin America. Among the five tribes known in the subfamily, one of the least studied is Cavernicolini. It has only two species within Cavernicola genus (Barber, 1937), little is known about the biochemistry of the species of this genus, therefore, using MALDI-TOF MS we provide a better understanding of the two species and differentiates them. The distinction was made by the different spectral profile of the species, where C. lenti presents unique signals in many regions, while the C. pilosa shows high-intensity signals and m/z in high bands. The application of digital mass spectrometry combined with chemometric methods was able to accurately distinguish two species of the genus Cavernicola.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Triatominae/classification , Animals , Species Specificity , Triatominae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...